1. (6 points) Evaluate the following expressions.
a) $\arcsin (\sin (4 \pi / 3)))$
$=\arcsin \left(\frac{\sqrt{3}}{2}\right)$
$=-\frac{\pi}{3}$
b) $\tan (\arcsin (x / 3))=\frac{x}{\sqrt{9-x^{2}}}$

$$
\sqrt{9-x^{2}}
$$

2. (6 points) Solve each equation for x.
a) $e^{\sqrt{x+1}}-2=5$
b) $\ln x+\ln (x-3)=0$
$e^{\sqrt{x+1}}=7$
$\sqrt{x+1}=\ln 7$
$x+1=\ln ^{2} 7$
$x=\ln ^{2} 7-1$

$$
\begin{aligned}
& \ln \left(x^{2}-3 x\right)=0 \\
& x^{2}-3 x=1 \\
& x^{2}-3 x-1=0 \\
& x=\frac{3 \pm \sqrt{13}}{2} \\
& x=\frac{3+\sqrt{13}}{2}
\end{aligned}
$$

3.(4 points) A contractor purchases a piece of equipment for $\$ 18,000$ that costs an average of $\$$ 7.50 per hour for fuel and maintenance. The equipment operator is paid $\$ 16.50$ per hour, and customers are charged $\$ 30$ per hour. a) Write an equation for the cost C of operating this equipment for t hours.
$C(t)=18000+7.50 t+16.50 t$
$C(t)=18000+24 t$
b) Write an equation for the revenue R derived from t hours of use.
$R(t)=30 t$
c) Find the break even point by finding the time at which $R=C$.
$30 t=18000+24 t$
$6 t=18000$
$t=3000$ hours
4. (3 points) Expand and simplify the expression $\ln \left(\frac{e^{8} \sqrt{x^{2}-9}}{\left(x^{7}+4\right)^{3}}\right)$
$\ln \left(e^{8} \sqrt{x^{2}-9}\right)-\ln \left(\left(x^{7}+4\right)^{3}\right)$
$\ln e^{8}+\ln \sqrt{x^{2}-9}-\ln \left(\left(x^{7}+4\right)^{3}\right)$
$8+\frac{1}{2} \ln (x+3)(x-3)-3 \ln \left(x^{7}+4\right)$
$8+\frac{1}{2} \ln (x+3)+\frac{1}{2} \ln (x-3)-3 \ln \left(x^{7}+4\right)$
5. (6 points) Given $f(x)=\sin x$ and $g(x)=\ln x$ find the following functions and their domains.
b) $g \circ f$
a) $f \circ g$
$(g \circ f)(x)=\ln (\sin x)$
$(f \circ g)(x)=\sin (\ln x)$
Domain: $(2 n \pi,(2 n+1) \pi)$
Domain: $(0, \infty)$
6. (5 points) Find the inverse of $f(x)=\frac{3 x-2}{2 x+5}$ and state the domain and range of f^{-1}.
$x=\frac{3 y-2}{2 y+5}$
Since f is one-to-one:
$2 x y+5 x=3 y-2$
$2 x y-3 y=-5 x-2$
$f^{-1}=\frac{-5 x-2}{2 x-3}$
$D_{f^{-1}}:\left(-\infty, \frac{3}{2}\right) \cup\left(\frac{3}{2}, \infty\right)$
$y(2 x-3)=-5 x-2$
$y=\frac{-5 x-2}{2 x-3}$
$R_{f^{-1}}:\left(-\infty,-\frac{5}{2}\right) \cup\left(-\frac{5}{2}, \infty\right)$
7. (4 points) Evaluate the following limits. If the limit does not exist, explain why.
a) $\lim _{x \rightarrow 2} 2^{\sqrt{x^{2}+3 x+6}}$
$=2^{\sqrt{(2)^{2}+3(2)+6}}$
$=2^{\sqrt{16}}$
$=2^{4}$
$=16$
b) $\lim _{x \rightarrow 3} \sec \left(\frac{\pi x}{2}\right)$

Notice sec $\left(\frac{3 \pi}{2}\right)$ is undefined
So consider the left and right hand limits
$\lim _{x \rightarrow 3^{+}} \sec \left(\frac{\pi x}{2}\right)=+\infty$
$\lim _{x \rightarrow 3^{-}} \sec \left(\frac{\pi x}{2}\right)=-\infty$
So, $\lim _{x \rightarrow 3} \sec \left(\frac{\pi x}{2}\right)$ DNE
8. (10 points) Evaluate the following limits.
a) $\begin{aligned} & \lim _{x \rightarrow-2} \frac{x^{2}-3 x-10}{3 x^{2}+5 x-2} \\ = & \lim _{x \rightarrow-2} \frac{(x-5)(x+2)}{(3 x-1)(x+2)} \\ = & \lim _{x \rightarrow-2} \frac{x-5}{3 x-1} \\ = & \frac{-2-5}{3(-2)-1} \\ = & \frac{-7}{-7} \\ = & 1\end{aligned}$
b) $\lim _{x \rightarrow 3} \frac{x-\sqrt{x+6}}{x^{3}-3 x^{2}}$
$=\lim _{x \rightarrow 3} \frac{x-\sqrt{x+6}}{x^{3}-3 x^{2}} \cdot \frac{x+\sqrt{x+6}}{x+\sqrt{x+6}}$
$=\lim _{x \rightarrow 3} \frac{x^{2}-x+6}{x^{2}(x-3)(x+\sqrt{x+6})}$
$=\lim _{x \rightarrow 3} \frac{(x-3)(x+2)}{x^{2}(x-3)(x+\sqrt{x+6})}$
$=\lim _{x \rightarrow 3} \frac{(x+2)}{x^{2}(x+\sqrt{x+6})}$
$=\frac{3+2}{3^{2}(3+\sqrt{3+6})}$
$=\frac{5}{54}$
9. (10 points) Evaluate the following limits.
a) $\lim _{x \rightarrow 0} \frac{1-e^{-x}}{e^{x}-1}$

$$
=\lim _{x \rightarrow 0} \frac{e^{x}-1}{e^{x}\left(e^{x}-1\right)}
$$

$$
=\lim _{\substack{x \rightarrow 0 \\ 1}} \frac{1}{e^{x}}
$$

$$
=\frac{1}{e^{0}}
$$

$$
=1_{1}^{e^{0}}
$$

$$
\begin{aligned}
& \text { b) } \lim _{x \rightarrow \pi / 2} \frac{\cos ^{2} x}{\sin x-1} \\
& =\lim _{x \rightarrow \pi / 2} \frac{1-\sin ^{2} x}{\sin x-1} \\
& =\lim _{x \rightarrow \pi / 2} \frac{(1-\sin x)(1+\sin x)}{\sin x-1} \\
& =\lim _{x \rightarrow \pi / 2}(-1-\sin x) \\
& =-1-1 \\
& =-2
\end{aligned}
$$

10. (8 points) Evaluate the following limits.

$$
\text { a) } \begin{aligned}
& \lim _{x \rightarrow-\infty} \frac{\sqrt{x^{2}-9}}{2 x+5} \\
& =\lim _{x \rightarrow-\infty} \frac{\sqrt{1-\frac{9}{x^{2}}}}{-2-\frac{5}{x}} \\
& =\frac{\sqrt{1-0}}{2+0} \\
& =-\frac{1}{2}
\end{aligned}
$$

$$
\begin{aligned}
& \text { b) } \lim _{x \rightarrow \infty}\left(\sqrt{x^{2}+4 x+1}-x\right) \\
& =\lim _{x \rightarrow \infty}\left(\sqrt{x^{2}+4 x+1}-x\right) \cdot \frac{\left(\sqrt{x^{2}+4 x+1}+x\right)}{\left(\sqrt{x^{2}+4 x+1}+x\right)} \\
& =\lim _{x \rightarrow \infty} \frac{x^{2}+4 x+1-x^{2}}{\left(\sqrt{x^{2}+4 x+1}+x\right)} \\
& =\lim _{x \rightarrow \infty} \frac{4 x+1}{\left(\sqrt{x^{2}+4 x+1}+x\right)} \\
& =\lim _{x \rightarrow \infty} \frac{4+\frac{1}{x}}{\left(\sqrt{1+\frac{4}{x}+\frac{1}{x^{2}}}+1\right.} \\
& =\frac{4}{(\sqrt{1}+1} \\
& =2
\end{aligned}
$$

11. (6 points) Find the following infinite limits. Explain your reasoning.
a) $\lim _{x \rightarrow 4^{+}} \frac{5-x}{x-4}$

Since the numerator goes to 1 , and the denominator goes to 0
Then $\lim _{x \rightarrow 4^{+}} \frac{5-x}{x-4}=\infty$
b) $\lim _{x \rightarrow 9} \frac{\sqrt{x}}{(x-9)^{4}}$

Since the numerator goes to 3 , and the denominator goes to 0 ,
Then $\lim _{x \rightarrow 9} \frac{\sqrt{x}}{(x-9)^{4}}=\infty$
12. (4 points) Given the function $f(x)=\left\{\begin{array}{lll}x^{2}-3 x & \text { if } & x<4 \\ 2 x-5 & \text { if } & x \geq 4\end{array}\right.$
(8 points) Also, evaluate the following.
a) Sketch the graph of $f(x)$

b) $f(4)=3$
f) $\lim _{x \rightarrow 0} f(x)=0$
c) $f(0)=0$
g) $\lim _{x \rightarrow 4} f(x)=D N E$
d) $f(-1)=4$
h) $\lim _{x \rightarrow-\infty} f(x)=\infty$
e) $\lim _{x \rightarrow-4} f(x)=28$
i) $\lim _{x \rightarrow \infty} f(x)=\infty$
13. (6 points) Find any discontinuities of the following functions. Then, using the definition of continuity explain why the function is discontinuous at each point of discontinuity.
a) $f(x)=\frac{3 x^{2}-x-2}{x-1}$
$f(x)=\frac{(3 x+2)(x-1)}{x-1}$
b) $g(x)=\left\{\begin{array}{lll}\sqrt{-x} & \text { if } & x<0 \\ 3-x & \text { if } & 0 \leq x \leq 3 \\ (x-3)^{2} & \text { if } & x>3\end{array}\right.$

This function has a non-removable disconti-
This has a removable discontinuity at $x=1$ because the function is not defined at $x=1$.
nuity at $x=0$ because $\lim _{x \rightarrow 0^{-}} g(x)=0$ but $\lim _{x \rightarrow 0^{+}} g(x)=3$. So $\lim _{x \rightarrow 0} g(x)=D N E$.
14. (4 points) For what value of the constant b is the function $f(x)=\left\{\begin{array}{ll}x^{2}+b x & x \leq 5 \\ 5 \sin \left(\frac{\pi}{2} x\right) & x>5\end{array}\right.$ continuous?
Since both pieces of the function are continuous on their respective domains we need the limit to exist. So,
$\lim _{x \rightarrow 5^{-}} f(x)=\lim _{x \rightarrow 5^{+}} f(x)$
$\lim _{x \rightarrow 5}\left(x^{2}+b x\right)=\lim _{x \rightarrow 5} 5 \sin \left(\frac{\pi x}{2}\right)$
$5^{2}+5 b=5 \sin \left(\frac{5 \pi}{2}\right)$
$25+5 b=5$
$5 b=-20$
$b=-4$ will make $f(x)$ continuous.
15. (10 points) Consider the function $f(x)=x^{2}+4 x-1$.
a) (2 points) Find the average rate of change of $f(x)$ on the interval from $[1,3]$.

$$
\begin{aligned}
f_{\text {avg }} & =\frac{f(3)-f(1)}{3-1} \\
& =\frac{\left(3^{2}+4(3)-1\right)-\left(1^{2}+4(1)-1\right)}{2} \\
& =\frac{(9+12-1)-(1+4-1)}{2} \\
& =\frac{20-4}{2} \\
& =\frac{16}{2} \\
f_{\text {avg }} & =8
\end{aligned}
$$

b) (5 points) Use the definition of the derivative to find $f^{\prime}(x)$. You must use the definition or no credit will be given.

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{\left[(x+h)^{2}+4(x+h)-1\right]-\left[x^{2}+4 x-1\right]}{h} \\
& =\lim _{h \rightarrow 0} \frac{x^{2}+2 x h+h^{2}+4 x+4 h-1-x^{2}-4 x+1}{h} \\
& =\lim _{h \rightarrow 0} \frac{2 x h+h^{2}+4 h}{h} \\
& =\lim _{h \rightarrow 0}(2 x+h+4) \\
f^{\prime}(x) & =2 x+4
\end{aligned}
$$

c) (3 points) Find an equation of the tangent line to $f(x)$ at the point $(4,31)$. Give your answer into slope-intercept form.
$f^{\prime}(4)=2(4)+4=12$
So, $y-31=12(x-4)$
$y=12 x-17$

